$S_{N}^{2}/E_{2}/S_{N}'/E,$ Solvent Affects cont... Unimolecular (SN1/E) +Br +o SN E Solvent "Acolt "Meolt Formic Acid HzO K Kacott 4 5,000 150,000 more Polar The Decrease in energy of + reduces EA and speed reaction UP + Transition state polar Highly affected by solvent Higher dielectric constant Solvents (High E), will strongly solvate and stabilize transition State

What about to:molecular Rens?

SN² & Ez Similarly non-polar Bimolecular non-polar = not strongly affected by Solvent.

> Non-polar Solvents will make SNZ/Ez faster, but a polar Solvent will not Shut them down.

Unimdecular (polar #) these strongly affected by Solvent >> faster in polar Solvents >> Shut down in non-polar Solvents LO are not solvated by non-polar Solvents.

Nucleophile

Relative nucleophilicity (throughout a nucleophile) HS >> °CN > °I > OH > °N3 > Br > IP 2 R8 2 Ci > F > N3 > HD No super clear trend

Nucleophilicity decreases with increasing EN $\underline{C \ N \ O \ F}_{P} \in N$

Least EN

most EN element

Anions more nucleophilic than their Conjugates OH >> HZO NO >> Rolf RNO >> Rolf

Simple Cuide

O'C & below is usually low temp

Magic Sheet

NUCLEOPHILIC SUBSTITUTION AND ELIMINATION

The question is how do we discern when substitution is favored verse elimination? The answer is found partly in how we should think about reactions of alkyl halides.

The characteristic reaction of alkyl halides (or alkyl tosylates) with a Lewis base is **elimination**, special conditions are required to promote substitution.

Given here is a set of guidelines (not absolutes) that can be used to arrive at the probable solution to nucleophilic substitution/elimination problems.

	Substitution	Elimination E2 $3^{\circ} > 2^{\circ} > 1^{\circ}$		
substrate	S_N^2 benzyl = allyl > Me > 1 ^o > 2 ^o α -haloketone, α -haloester, α -halonitrile			
solvent	polar aprotic	polar aprotic		
nucleophile	good nuc (weaker base than OH ⁻)	bulky or strong base $\geq OH^{-}$		
leaving group	sulfonate > I ⁻ > Br ⁻ > Cl ⁻	sulfonate > I^- > Br^- > Cl^-		
Temp	low	high		
	S _N 1	E1		
substrate	$3^{\circ} > 2^{\circ}$	$3^{\circ} > 2^{\circ} > 1^{\circ}$		
solvent	polar protic	polar protic		
nucleophile	weak nuc (no anions!)	any anionic base		
leaving group	sulfonate $> I^- > Br^- > Cl^-$	sulfonate > I^- > Br^- > Cl^-		
Temp	low	high		

Classification of Nucleophiles

Very good nucleophile	I ⁻ , HS ⁻ , RS ⁻				
Good nucleophile	Br $^-$, OH $^-$, RO $^-$, CN $^-$, N $_3^-$				
Fair nucleophile	NH_3 , Cl^- , F^- , RCO_2^-				
Weak nucleophile	H ₂ O, ROH				
Very weak nucleophile	RCO ₂ H				

	Nucleophilic C Nuc	Constants c cleophiles	of Various	ucleophilicity constant	1		
	Nucleophile	n _{CH3} I c	pK _a of onjugate a	icid	Solvents	Which Promote	
	CH ₃ OH	0.0	-1.7	_	S _N 2/E2	(bimolecular)	-0
	_F –	2.7	3.45		Acetone Dimethyl s	ulfoxide (DMSO)	JL q
	CH ₃ CO ₂	4.3	4.8		N,N-Dimet	hylformamide (DMF)	A SAK
	Cl ⁻	4.4	-5.7		Hexamethy	, vlphosphoramide (HMP	PA) CH3-CEN
	NH ₃	5.5	9.25				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	N ₃ ⁻	5.8	4.75		Solven	ts Which Promote	,N_
	C ₆ H ₅ O ⁻	5.8	9.89		S _N 1/E1 (U	nimolecular/Ionizing)	
	Br [–]	5.8	-7.7		► ♦	Ethanol Methanol	_
	CH ₃ O ⁻	6.3	15.7		g ilicit is)	50% Aqueous Ethanol	
	OH ⁻	6.5	15.7		eoph olysi	Water Acetic Acid	
	(CH ₃ CH ₂) ₃ N	6.7	10.70		Incre nucle (solv	Formic Acid Trifluoroethanol	CFCH2-0H
	CN -	6.7	9.3	CEN		Trifluoroacetic acid	- hout
	I –	7.4	-10.7				Cr3 On
V	$(CH_3CH_2)_3P$	8.7	8.69				
Better	$C_{6}H_{5}S$ –	9.9	6.5				
nu C	NH ₂ P	good	oc - ch _a I Noc	$s + I^{\Theta}$	Storg		pla City 60
		week		-			A.2
						~	

weak I-

IH -10.7

